Note on power propagation time and lower bounds for the power domination number
نویسندگان
چکیده
We present a counterexample to a lower bound for the power domination number given in Liao, Power domination with bounded time constraints, J. Comb. Optim. 31 (2016): 725–742. We also define the power propagation time, using the power domination propagation ideas in Liao and the (zero forcing) propagation time in Hogben et al, Propagation time for zero forcing on a graph, Discrete Appl. Math., 160 (2012): 1994–2005.
منابع مشابه
Power propagation time and lower bounds for power domination number
We present a counterexample to a lower bound for power domination number given in Liao, Power domination with bounded time constraints, J. Comb. Optim., in press 2014. We also define the power propagation time and make connections between the power domination propagation ideas in Liao and the (zero forcing) propagation time in Hogben et al, Propagation time for zero forcing on a graph, Discrete...
متن کاملPower propagation time and lower bounds for power domination
5 We present a counterexample to a lower bound for power domination number given in Liao, Power 6 domination with bounded time constraints, J. Comb. Optim., in press 2014. We also define the power 7 propagation time and make connections between the power domination propagation ideas in Liao and the 8 (zero forcing) propagation time in Hogben et al, Propagation time for zero forcing on a graph, ...
متن کاملLower bounds on the signed (total) $k$-domination number
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
متن کاملBounds on the outer-independent double Italian domination number
An outer-independent double Italian dominating function (OIDIDF)on a graph $G$ with vertex set $V(G)$ is a function$f:V(G)longrightarrow {0,1,2,3}$ such that if $f(v)in{0,1}$ for a vertex $vin V(G)$ then $sum_{uin N[v]}f(u)geq3$,and the set $ {uin V(G)|f(u)=0}$ is independent. The weight ofan OIDIDF $f$ is the value $w(f)=sum_{vin V(G)}f(v)$. Theminimum weight of an OIDIDF on a graph $G$ is cal...
متن کاملBounds on the restrained Roman domination number of a graph
A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Optim.
دوره 34 شماره
صفحات -
تاریخ انتشار 2017